1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
//! AES-GCM: [Authenticated Encryption and Associated Data (AEAD)][1] cipher
//! based on AES in [Galois/Counter Mode][2].
//!
//! ## Performance Notes
//!
//! By default this crate will use software implementations of both AES and
//! the POLYVAL universal hash function.
//!
//! When targeting modern x86/x86_64 CPUs, use the following `RUSTFLAGS` to
//! take advantage of high performance AES-NI and CLMUL CPU intrinsics:
//!
//! ```text
//! RUSTFLAGS="-Ctarget-cpu=sandybridge -Ctarget-feature=+aes,+sse2,+sse4.1,+ssse3"
//! ```
//!
//! ## Security Notes
//!
//! This crate has received one [security audit by NCC Group][3], with no significant
//! findings. We would like to thank [MobileCoin][4] for funding the audit.
//!
//! All implementations contained in the crate are designed to execute in constant
//! time, either by relying on hardware intrinsics (i.e. AES-NI and CLMUL on
//! x86/x86_64), or using a portable implementation which is only constant time
//! on processors which implement constant-time multiplication.
//!
//! It is not suitable for use on processors with a variable-time multiplication
//! operation (e.g. short circuit on multiply-by-zero / multiply-by-one, such as
//! certain 32-bit PowerPC CPUs and some non-ARM microcontrollers).
//!
//! # Usage
//!
//! Simple usage (allocating, no associated data):
//!
//! ```
//! use aes_gcm::Aes256Gcm; // Or `Aes128Gcm`
//! use aes_gcm::aead::{Aead, NewAead, generic_array::GenericArray};
//!
//! let key = GenericArray::from_slice(b"an example very very secret key.");
//! let cipher = Aes256Gcm::new(key);
//!
//! let nonce = GenericArray::from_slice(b"unique nonce"); // 96-bits; unique per message
//!
//! let ciphertext = cipher.encrypt(nonce, b"plaintext message".as_ref())
//! .expect("encryption failure!"); // NOTE: handle this error to avoid panics!
//!
//! let plaintext = cipher.decrypt(nonce, ciphertext.as_ref())
//! .expect("decryption failure!"); // NOTE: handle this error to avoid panics!
//!
//! assert_eq!(&plaintext, b"plaintext message");
//! ```
//!
//! ## In-place Usage (eliminates `alloc` requirement)
//!
//! This crate has an optional `alloc` feature which can be disabled in e.g.
//! microcontroller environments that don't have a heap.
//!
//! The [`AeadInPlace::encrypt_in_place`] and [`AeadInPlace::decrypt_in_place`]
//! methods accept any type that impls the [`aead::Buffer`] trait which
//! contains the plaintext for encryption or ciphertext for decryption.
//!
//! Note that if you enable the `heapless` feature of this crate,
//! you will receive an impl of [`aead::Buffer`] for `heapless::Vec`
//! (re-exported from the [`aead`] crate as [`aead::heapless::Vec`]),
//! which can then be passed as the `buffer` parameter to the in-place encrypt
//! and decrypt methods:
//!
//! ```
//! # #[cfg(feature = "heapless")]
//! # {
//! use aes_gcm::Aes256Gcm; // Or `Aes128Gcm`
//! use aes_gcm::aead::{AeadInPlace, NewAead, generic_array::GenericArray};
//! use aes_gcm::aead::heapless::{Vec, consts::U128};
//!
//! let key = GenericArray::from_slice(b"an example very very secret key.");
//! let cipher = Aes256Gcm::new(key);
//!
//! let nonce = GenericArray::from_slice(b"unique nonce"); // 96-bits; unique per message
//!
//! let mut buffer: Vec<u8, U128> = Vec::new();
//! buffer.extend_from_slice(b"plaintext message");
//!
//! // Encrypt `buffer` in-place, replacing the plaintext contents with ciphertext
//! cipher.encrypt_in_place(nonce, b"", &mut buffer).expect("encryption failure!");
//!
//! // `buffer` now contains the message ciphertext
//! assert_ne!(&buffer, b"plaintext message");
//!
//! // Decrypt `buffer` in-place, replacing its ciphertext context with the original plaintext
//! cipher.decrypt_in_place(nonce, b"", &mut buffer).expect("decryption failure!");
//! assert_eq!(&buffer, b"plaintext message");
//! # }
//! ```
//!
//! [1]: https://en.wikipedia.org/wiki/Authenticated_encryption
//! [2]: https://en.wikipedia.org/wiki/Galois/Counter_Mode
//! [3]: https://research.nccgroup.com/2020/02/26/public-report-rustcrypto-aes-gcm-and-chacha20poly1305-implementation-review/
//! [4]: https://www.mobilecoin.com/
#![no_std]
#![cfg_attr(docsrs, feature(doc_cfg))]
#![doc(
html_logo_url = "https://raw.githubusercontent.com/RustCrypto/meta/master/logo.svg",
html_favicon_url = "https://raw.githubusercontent.com/RustCrypto/meta/master/logo.svg"
)]
#![deny(unsafe_code)]
#![warn(missing_docs, rust_2018_idioms)]
pub use aead::{self, AeadInPlace, Error, NewAead};
#[cfg(feature = "aes")]
pub use aes;
use cipher::{
block::{Block, BlockCipher, Key, NewBlockCipher},
consts::{U0, U16},
generic_array::{ArrayLength, GenericArray},
stream::{FromBlockCipher, SyncStreamCipher},
};
use core::marker::PhantomData;
use ctr::Ctr32BE;
use ghash::{
universal_hash::{NewUniversalHash, UniversalHash},
GHash,
};
#[cfg(feature = "zeroize")]
use zeroize::Zeroize;
#[cfg(feature = "aes")]
use aes::{cipher::consts::U12, Aes128, Aes256};
/// Maximum length of associated data
pub const A_MAX: u64 = 1 << 36;
/// Maximum length of plaintext
pub const P_MAX: u64 = 1 << 36;
/// Maximum length of ciphertext
pub const C_MAX: u64 = (1 << 36) + 16;
/// AES-GCM tags
pub type Tag = GenericArray<u8, U16>;
/// AES-GCM with a 128-bit key and 96-bit nonce
#[cfg(feature = "aes")]
#[cfg_attr(docsrs, doc(cfg(feature = "aes")))]
pub type Aes128Gcm = AesGcm<Aes128, U12>;
/// AES-GCM with a 256-bit key and 96-bit nonce
#[cfg(feature = "aes")]
#[cfg_attr(docsrs, doc(cfg(feature = "aes")))]
pub type Aes256Gcm = AesGcm<Aes256, U12>;
/// AES-GCM: generic over an underlying AES implementation and nonce size.
///
/// This type is generic to support substituting alternative AES implementations
/// (e.g. embedded hardware implementations)
///
/// It is NOT intended to be instantiated with any block cipher besides AES!
/// Doing so runs the risk of unintended cryptographic properties!
///
/// The `N` generic parameter can be used to instantiate AES-GCM with other
/// nonce sizes, however it's recommended to use it with `typenum::U12`,
/// the default of 96-bits.
///
/// If in doubt, use the built-in [`Aes128Gcm`] and [`Aes256Gcm`] type aliases.
#[derive(Clone)]
pub struct AesGcm<Aes, NonceSize>
where
Aes: BlockCipher<BlockSize = U16>,
Aes::ParBlocks: ArrayLength<Block<Aes>>,
NonceSize: ArrayLength<u8>,
{
/// Encryption cipher
cipher: Aes,
/// GHASH authenticator
ghash: GHash,
/// Length of the nonce
nonce_size: PhantomData<NonceSize>,
}
impl<Aes, NonceSize> NewAead for AesGcm<Aes, NonceSize>
where
Aes: BlockCipher<BlockSize = U16> + NewBlockCipher,
Aes::ParBlocks: ArrayLength<Block<Aes>>,
NonceSize: ArrayLength<u8>,
{
type KeySize = Aes::KeySize;
fn new(key: &Key<Aes>) -> Self {
Aes::new(key).into()
}
}
impl<Aes, NonceSize> From<Aes> for AesGcm<Aes, NonceSize>
where
Aes: BlockCipher<BlockSize = U16> + NewBlockCipher,
Aes::ParBlocks: ArrayLength<Block<Aes>>,
NonceSize: ArrayLength<u8>,
{
fn from(cipher: Aes) -> Self {
let mut ghash_key = GenericArray::default();
cipher.encrypt_block(&mut ghash_key);
let ghash = GHash::new(&ghash_key);
#[cfg(feature = "zeroize")]
ghash_key.zeroize();
Self {
cipher,
ghash,
nonce_size: PhantomData,
}
}
}
impl<Aes, NonceSize> AeadInPlace for AesGcm<Aes, NonceSize>
where
Aes: BlockCipher<BlockSize = U16> + NewBlockCipher,
Aes::ParBlocks: ArrayLength<Block<Aes>>,
NonceSize: ArrayLength<u8>,
{
type NonceSize = NonceSize;
type TagSize = U16;
type CiphertextOverhead = U0;
fn encrypt_in_place_detached(
&self,
nonce: &GenericArray<u8, NonceSize>,
associated_data: &[u8],
buffer: &mut [u8],
) -> Result<Tag, Error> {
if buffer.len() as u64 > P_MAX || associated_data.len() as u64 > A_MAX {
return Err(Error);
}
// TODO(tarcieri): interleave encryption with GHASH
// See: <https://github.com/RustCrypto/AEADs/issues/74>
let mut ctr = self.init_ctr(nonce);
ctr.seek_ctr(1);
ctr.apply_keystream(buffer);
let mut tag = self.compute_tag(associated_data, buffer);
ctr.seek_ctr(0);
ctr.apply_keystream(tag.as_mut_slice());
Ok(tag)
}
fn decrypt_in_place_detached(
&self,
nonce: &GenericArray<u8, NonceSize>,
associated_data: &[u8],
buffer: &mut [u8],
tag: &Tag,
) -> Result<(), Error> {
if buffer.len() as u64 > C_MAX || associated_data.len() as u64 > A_MAX {
return Err(Error);
}
// TODO(tarcieri): interleave encryption with GHASH
// See: <https://github.com/RustCrypto/AEADs/issues/74>
let mut expected_tag = self.compute_tag(associated_data, buffer);
let mut ctr = self.init_ctr(nonce);
ctr.apply_keystream(expected_tag.as_mut_slice());
use subtle::ConstantTimeEq;
if expected_tag.ct_eq(&tag).unwrap_u8() == 1 {
ctr.apply_keystream(buffer);
Ok(())
} else {
Err(Error)
}
}
}
impl<Aes, NonceSize> AesGcm<Aes, NonceSize>
where
Aes: BlockCipher<BlockSize = U16> + NewBlockCipher,
Aes::ParBlocks: ArrayLength<Block<Aes>>,
NonceSize: ArrayLength<u8>,
{
/// Initialize counter mode.
///
/// See algorithm described in Section 7.2 of NIST SP800-38D:
/// <https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf>
///
/// > Define a block, J0, as follows:
/// > If len(IV)=96, then J0 = IV || 0{31} || 1.
/// > If len(IV) ≠ 96, then let s = 128 ⎡len(IV)/128⎤-len(IV), and
/// > J0=GHASH(IV||0s+64||[len(IV)]64).
fn init_ctr(&self, nonce: &GenericArray<u8, NonceSize>) -> Ctr32BE<&Aes> {
let j0 = if NonceSize::to_usize() == 12 {
let mut block = GenericArray::default();
block[..12].copy_from_slice(nonce);
block[15] = 1;
block
} else {
let mut ghash = self.ghash.clone();
ghash.update_padded(nonce);
let mut block = GenericArray::default();
let nonce_bits = (NonceSize::to_usize() as u64) * 8;
block[8..].copy_from_slice(&nonce_bits.to_be_bytes());
ghash.update(&block);
ghash.finalize().into_bytes()
};
Ctr32BE::from_block_cipher(&self.cipher, &j0)
}
/// Authenticate the given plaintext and associated data using GHASH
fn compute_tag(&self, associated_data: &[u8], buffer: &[u8]) -> Tag {
let mut ghash = self.ghash.clone();
ghash.update_padded(associated_data);
ghash.update_padded(buffer);
let associated_data_bits = (associated_data.len() as u64) * 8;
let buffer_bits = (buffer.len() as u64) * 8;
let mut block = GenericArray::default();
block[..8].copy_from_slice(&associated_data_bits.to_be_bytes());
block[8..].copy_from_slice(&buffer_bits.to_be_bytes());
ghash.update(&block);
ghash.finalize().into_bytes()
}
}