1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
const PRIVATE_KEY_LEN: usize = 32;
const SIGNED_KEY_LEN: usize = 32;
const COMBINED_KEY_LENGTH: usize = PRIVATE_KEY_LEN + SIGNED_KEY_LEN;
// Statically ensure the numbers above are in-sync.
#[cfg(feature = "private")]
const_assert!(crate::secure::private::KEY_LEN == PRIVATE_KEY_LEN);
#[cfg(feature = "signed")]
const_assert!(crate::secure::signed::KEY_LEN == SIGNED_KEY_LEN);
/// A cryptographic master key for use with `Signed` and/or `Private` jars.
///
/// This structure encapsulates secure, cryptographic keys for use with both
/// [`PrivateJar`](crate::PrivateJar) and [`SignedJar`](crate::SignedJar). A
/// single instance of a `Key` can be used for both a `PrivateJar` and a
/// `SignedJar` simultaneously with no notable security implications.
#[cfg_attr(all(doc, not(doctest)), doc(cfg(any(feature = "private", feature = "signed"))))]
#[derive(Clone)]
pub struct Key {
pub(crate) signing: [u8; SIGNED_KEY_LEN],
pub(crate) encryption: [u8; PRIVATE_KEY_LEN]
}
impl Key {
// An empty key structure, to be filled.
const fn zero() -> Self {
Key { signing: [0; SIGNED_KEY_LEN], encryption: [0; PRIVATE_KEY_LEN] }
}
/// Creates a new `Key` from a 512-bit cryptographically random string.
///
/// The supplied key must be at least 512-bits (64 bytes). For security, the
/// master key _must_ be cryptographically random.
///
/// # Panics
///
/// Panics if `key` is less than 64 bytes in length.
///
/// # Example
///
/// ```rust
/// use cookie::Key;
///
/// # /*
/// let key = { /* a cryptographically random key >= 64 bytes */ };
/// # */
/// # let key: &Vec<u8> = &(0..64).collect();
///
/// let key = Key::from(key);
/// ```
pub fn from(key: &[u8]) -> Key {
if key.len() < 64 {
panic!("bad key length: expected >= 64 bytes, found {}", key.len());
}
let mut output = Key::zero();
output.signing.copy_from_slice(&key[..SIGNED_KEY_LEN]);
output.encryption.copy_from_slice(&key[SIGNED_KEY_LEN..COMBINED_KEY_LENGTH]);
output
}
/// Derives new signing/encryption keys from a master key.
///
/// The master key must be at least 256-bits (32 bytes). For security, the
/// master key _must_ be cryptographically random. The keys are derived
/// deterministically from the master key.
///
/// # Panics
///
/// Panics if `key` is less than 32 bytes in length.
///
/// # Example
///
/// ```rust
/// use cookie::Key;
///
/// # /*
/// let master_key = { /* a cryptographically random key >= 32 bytes */ };
/// # */
/// # let master_key: &Vec<u8> = &(0..32).collect();
///
/// let key = Key::from_master(master_key);
/// ```
pub fn from_master(master_key: &[u8]) -> Self {
if master_key.len() < 32 {
panic!("bad master key length: expected >= 32 bytes, found {}", master_key.len());
}
// Expand the master key into two HKDF generated keys.
const KEYS_INFO: &[u8] = b"COOKIE;SIGNED:HMAC-SHA256;PRIVATE:AEAD-AES-256-GCM";
let mut both_keys = [0; SIGNED_KEY_LEN + PRIVATE_KEY_LEN];
let hk = hkdf::Hkdf::<sha2::Sha256>::from_prk(master_key).expect("key length prechecked");
hk.expand(KEYS_INFO, &mut both_keys).expect("expand into keys");
// Copy the key parts into their respective fields.
Key::from(&both_keys)
}
/// Generates signing/encryption keys from a secure, random source. Keys are
/// generated nondeterministically.
///
/// # Panics
///
/// Panics if randomness cannot be retrieved from the operating system. See
/// [`Key::try_generate()`] for a non-panicking version.
///
/// # Example
///
/// ```rust
/// use cookie::Key;
///
/// let key = Key::generate();
/// ```
pub fn generate() -> Key {
Self::try_generate().expect("failed to generate `Key` from randomness")
}
/// Attempts to generate signing/encryption keys from a secure, random
/// source. Keys are generated nondeterministically. If randomness cannot be
/// retrieved from the underlying operating system, returns `None`.
///
/// # Example
///
/// ```rust
/// use cookie::Key;
///
/// let key = Key::try_generate();
/// ```
pub fn try_generate() -> Option<Key> {
use crate::secure::rand::RngCore;
let mut rng = crate::secure::rand::thread_rng();
let mut both_keys = [0; SIGNED_KEY_LEN + PRIVATE_KEY_LEN];
rng.try_fill_bytes(&mut both_keys).ok()?;
Some(Key::from(&both_keys))
}
/// Returns the raw bytes of a key suitable for signing cookies.
///
/// # Example
///
/// ```rust
/// use cookie::Key;
///
/// let key = Key::generate();
/// let signing_key = key.signing();
/// ```
pub fn signing(&self) -> &[u8] {
&self.signing[..]
}
/// Returns the raw bytes of a key suitable for encrypting cookies.
///
/// # Example
///
/// ```rust
/// use cookie::Key;
///
/// let key = Key::generate();
/// let encryption_key = key.encryption();
/// ```
pub fn encryption(&self) -> &[u8] {
&self.encryption[..]
}
}
#[cfg(test)]
mod test {
use super::Key;
#[test]
fn from_works() {
let key = Key::from(&(0..64).collect::<Vec<_>>());
let signing: Vec<u8> = (0..32).collect();
assert_eq!(key.signing(), &*signing);
let encryption: Vec<u8> = (32..64).collect();
assert_eq!(key.encryption(), &*encryption);
}
#[test]
fn deterministic_derive() {
let master_key: Vec<u8> = (0..32).collect();
let key_a = Key::from_master(&master_key);
let key_b = Key::from_master(&master_key);
assert_eq!(key_a.signing(), key_b.signing());
assert_eq!(key_a.encryption(), key_b.encryption());
assert_ne!(key_a.encryption(), key_a.signing());
let master_key_2: Vec<u8> = (32..64).collect();
let key_2 = Key::from_master(&master_key_2);
assert_ne!(key_2.signing(), key_a.signing());
assert_ne!(key_2.encryption(), key_a.encryption());
}
#[test]
fn non_deterministic_generate() {
let key_a = Key::generate();
let key_b = Key::generate();
assert_ne!(key_a.signing(), key_b.signing());
assert_ne!(key_a.encryption(), key_b.encryption());
}
}