1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
const PRIVATE_KEY_LEN: usize = 32;
const SIGNED_KEY_LEN: usize = 32;
const COMBINED_KEY_LENGTH: usize = PRIVATE_KEY_LEN + SIGNED_KEY_LEN;

// Statically ensure the numbers above are in-sync.
#[cfg(feature = "private")]
const_assert!(crate::secure::private::KEY_LEN == PRIVATE_KEY_LEN);
#[cfg(feature = "signed")]
const_assert!(crate::secure::signed::KEY_LEN == SIGNED_KEY_LEN);

/// A cryptographic master key for use with `Signed` and/or `Private` jars.
///
/// This structure encapsulates secure, cryptographic keys for use with both
/// [`PrivateJar`](crate::PrivateJar) and [`SignedJar`](crate::SignedJar). A
/// single instance of a `Key` can be used for both a `PrivateJar` and a
/// `SignedJar` simultaneously with no notable security implications.
#[cfg_attr(all(doc, not(doctest)), doc(cfg(any(feature = "private", feature = "signed"))))]
#[derive(Clone)]
pub struct Key {
    pub(crate) signing: [u8; SIGNED_KEY_LEN],
    pub(crate) encryption: [u8; PRIVATE_KEY_LEN]
}

impl Key {
    // An empty key structure, to be filled.
    const fn zero() -> Self {
        Key { signing: [0; SIGNED_KEY_LEN], encryption: [0; PRIVATE_KEY_LEN] }
    }

    /// Creates a new `Key` from a 512-bit cryptographically random string.
    ///
    /// The supplied key must be at least 512-bits (64 bytes). For security, the
    /// master key _must_ be cryptographically random.
    ///
    /// # Panics
    ///
    /// Panics if `key` is less than 64 bytes in length.
    ///
    /// # Example
    ///
    /// ```rust
    /// use cookie::Key;
    ///
    /// # /*
    /// let key = { /* a cryptographically random key >= 64 bytes */ };
    /// # */
    /// # let key: &Vec<u8> = &(0..64).collect();
    ///
    /// let key = Key::from(key);
    /// ```
    pub fn from(key: &[u8]) -> Key {
        if key.len() < 64 {
            panic!("bad key length: expected >= 64 bytes, found {}", key.len());
        }

        let mut output = Key::zero();
        output.signing.copy_from_slice(&key[..SIGNED_KEY_LEN]);
        output.encryption.copy_from_slice(&key[SIGNED_KEY_LEN..COMBINED_KEY_LENGTH]);
        output
    }

    /// Derives new signing/encryption keys from a master key.
    ///
    /// The master key must be at least 256-bits (32 bytes). For security, the
    /// master key _must_ be cryptographically random. The keys are derived
    /// deterministically from the master key.
    ///
    /// # Panics
    ///
    /// Panics if `key` is less than 32 bytes in length.
    ///
    /// # Example
    ///
    /// ```rust
    /// use cookie::Key;
    ///
    /// # /*
    /// let master_key = { /* a cryptographically random key >= 32 bytes */ };
    /// # */
    /// # let master_key: &Vec<u8> = &(0..32).collect();
    ///
    /// let key = Key::from_master(master_key);
    /// ```
    pub fn from_master(master_key: &[u8]) -> Self {
        if master_key.len() < 32 {
            panic!("bad master key length: expected >= 32 bytes, found {}", master_key.len());
        }

        // Expand the master key into two HKDF generated keys.
        const KEYS_INFO: &[u8] = b"COOKIE;SIGNED:HMAC-SHA256;PRIVATE:AEAD-AES-256-GCM";
        let mut both_keys = [0; SIGNED_KEY_LEN + PRIVATE_KEY_LEN];
        let hk = hkdf::Hkdf::<sha2::Sha256>::from_prk(master_key).expect("key length prechecked");
        hk.expand(KEYS_INFO, &mut both_keys).expect("expand into keys");

        // Copy the key parts into their respective fields.
        Key::from(&both_keys)
    }

    /// Generates signing/encryption keys from a secure, random source. Keys are
    /// generated nondeterministically.
    ///
    /// # Panics
    ///
    /// Panics if randomness cannot be retrieved from the operating system. See
    /// [`Key::try_generate()`] for a non-panicking version.
    ///
    /// # Example
    ///
    /// ```rust
    /// use cookie::Key;
    ///
    /// let key = Key::generate();
    /// ```
    pub fn generate() -> Key {
        Self::try_generate().expect("failed to generate `Key` from randomness")
    }

    /// Attempts to generate signing/encryption keys from a secure, random
    /// source. Keys are generated nondeterministically. If randomness cannot be
    /// retrieved from the underlying operating system, returns `None`.
    ///
    /// # Example
    ///
    /// ```rust
    /// use cookie::Key;
    ///
    /// let key = Key::try_generate();
    /// ```
    pub fn try_generate() -> Option<Key> {
        use crate::secure::rand::RngCore;

        let mut rng = crate::secure::rand::thread_rng();
        let mut both_keys = [0; SIGNED_KEY_LEN + PRIVATE_KEY_LEN];
        rng.try_fill_bytes(&mut both_keys).ok()?;
        Some(Key::from(&both_keys))
    }

    /// Returns the raw bytes of a key suitable for signing cookies.
    ///
    /// # Example
    ///
    /// ```rust
    /// use cookie::Key;
    ///
    /// let key = Key::generate();
    /// let signing_key = key.signing();
    /// ```
    pub fn signing(&self) -> &[u8] {
        &self.signing[..]
    }

    /// Returns the raw bytes of a key suitable for encrypting cookies.
    ///
    /// # Example
    ///
    /// ```rust
    /// use cookie::Key;
    ///
    /// let key = Key::generate();
    /// let encryption_key = key.encryption();
    /// ```
    pub fn encryption(&self) -> &[u8] {
        &self.encryption[..]
    }
}

#[cfg(test)]
mod test {
    use super::Key;

    #[test]
    fn from_works() {
        let key = Key::from(&(0..64).collect::<Vec<_>>());

        let signing: Vec<u8> = (0..32).collect();
        assert_eq!(key.signing(), &*signing);

        let encryption: Vec<u8> = (32..64).collect();
        assert_eq!(key.encryption(), &*encryption);
    }

    #[test]
    fn deterministic_derive() {
        let master_key: Vec<u8> = (0..32).collect();

        let key_a = Key::from_master(&master_key);
        let key_b = Key::from_master(&master_key);

        assert_eq!(key_a.signing(), key_b.signing());
        assert_eq!(key_a.encryption(), key_b.encryption());
        assert_ne!(key_a.encryption(), key_a.signing());

        let master_key_2: Vec<u8> = (32..64).collect();
        let key_2 = Key::from_master(&master_key_2);

        assert_ne!(key_2.signing(), key_a.signing());
        assert_ne!(key_2.encryption(), key_a.encryption());
    }

    #[test]
    fn non_deterministic_generate() {
        let key_a = Key::generate();
        let key_b = Key::generate();

        assert_ne!(key_a.signing(), key_b.signing());
        assert_ne!(key_a.encryption(), key_b.encryption());
    }
}