1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
use syn;
use proc_macro::{TokenStream, Diagnostic};
use proc_macro2::TokenStream as TokenStream2;

use spanned::Spanned;
use ext::GenericExt;

use field::{Field, Fields};
use support::{GenericSupport, DataSupport};
use derived::{Derived, Variant, Struct, Enum};

pub type Result<T> = ::std::result::Result<T, Diagnostic>;
pub type MapResult = Result<TokenStream2>;

macro_rules! validator {
    ($fn_name:ident: $validate_fn_type:ty, $field:ident) => {
        pub fn $fn_name<F: 'static>(&mut self, f: F) -> &mut Self
            where F: Fn(&DeriveGenerator, $validate_fn_type) -> Result<()>
        {
            self.$field = Box::new(f);
            self
        }
    }
}

macro_rules! mappers {
    ($(($map_f:ident, $try_f:ident, $get_f:ident): $type:ty, $vec:ident),*) => (
        crate fn push_default_mappers(&mut self) {
            $(self.$vec.push(Box::new(concat_idents!(default_, $get_f)));)*
        }

        $(
            pub fn $map_f<F: 'static>(&mut self, f: F) -> &mut Self
                where F: Fn(&DeriveGenerator, $type) -> TokenStream2
            {
                if !self.$vec.is_empty() {
                    let last = self.$vec.len() - 1;
                    self.$vec[last] = Box::new(move |g, v| Ok(f(g, v)));
                }

                self
            }

            pub fn $try_f<F: 'static>(&mut self, f: F) -> &mut Self
                where F: Fn(&DeriveGenerator, $type) -> MapResult
            {
                if !self.$vec.is_empty() {
                    let last = self.$vec.len() - 1;
                    self.$vec[last] = Box::new(f);
                }

                self
            }

            pub fn $get_f(&self) -> &Box<Fn(&DeriveGenerator, $type) -> MapResult> {
                assert!(!self.$vec.is_empty());
                let last = self.$vec.len() - 1;
                &self.$vec[last]
            }
        )*
    )
}

// FIXME: Take a `Box<Fn>` everywhere so we can capture args!
pub struct DeriveGenerator {
    pub input: syn::DeriveInput,
    pub trait_impl: syn::ItemImpl,
    pub trait_path: syn::Path,
    crate generic_support: GenericSupport,
    crate data_support: DataSupport,
    crate enum_validator: Box<Fn(&DeriveGenerator, Enum) -> Result<()>>,
    crate struct_validator: Box<Fn(&DeriveGenerator, Struct) -> Result<()>>,
    crate generics_validator: Box<Fn(&DeriveGenerator, &::syn::Generics) -> Result<()>>,
    crate fields_validator: Box<Fn(&DeriveGenerator, Fields) -> Result<()>>,
    crate type_generic_mapper: Option<Box<Fn(&DeriveGenerator, &syn::Ident, &syn::TypeParam) -> TokenStream2>>,
    crate generic_replacements: Vec<(usize, usize)>,
    crate functions: Vec<Box<Fn(&DeriveGenerator, TokenStream2) -> TokenStream2>>,
    crate enum_mappers: Vec<Box<Fn(&DeriveGenerator, Enum) -> MapResult>>,
    crate struct_mappers: Vec<Box<Fn(&DeriveGenerator, Struct) -> MapResult>>,
    crate variant_mappers: Vec<Box<Fn(&DeriveGenerator, Variant) -> MapResult>>,
    crate fields_mappers: Vec<Box<Fn(&DeriveGenerator, Fields) -> MapResult>>,
    crate field_mappers: Vec<Box<Fn(&DeriveGenerator, Field) -> MapResult>>,
}

pub fn default_enum_mapper(gen: &DeriveGenerator, data: Enum) -> MapResult {
    let variant = data.variants().map(|v| &v.value.ident);
    let fields = data.variants().map(|v| v.fields().match_tokens());
    let enum_name = ::std::iter::repeat(&data.derive_input.ident);
    let expression = data.variants()
        .map(|v| gen.variant_mapper()(gen, v))
        .collect::<Result<Vec<_>>>()?;

    Ok(quote! {
        // FIXME: Check if we can also use id_match_tokens due to match
        // ergonomics. I don't think so, though. If we can't, then ask (in
        // `function`) whether receiver is `&self`, `&mut self` or `self` and
        // bind match accordingly.
        match self {
            #(#enum_name::#variant #fields => { #expression }),*
        }
    })
}

pub fn null_enum_mapper(gen: &DeriveGenerator, data: Enum) -> MapResult {
    let expression = data.variants()
        .map(|v| gen.variant_mapper()(gen, v))
        .collect::<Result<Vec<_>>>()?;

    Ok(quote!(#(#expression)*))
}

pub fn default_struct_mapper(gen: &DeriveGenerator, data: Struct) -> MapResult {
    gen.fields_mapper()(gen, data.fields())
}

pub fn default_variant_mapper(gen: &DeriveGenerator, data: Variant) -> MapResult {
    gen.fields_mapper()(gen, data.fields())
}

pub fn default_field_mapper(_gen: &DeriveGenerator, _data: Field) -> MapResult {
    Ok(TokenStream2::new())
}

pub fn default_fields_mapper(g: &DeriveGenerator, fields: Fields) -> MapResult {
    let field = fields.iter()
        .map(|field| g.field_mapper()(g, field))
        .collect::<Result<Vec<_>>>()?;

    Ok(quote!({ #(#field)* }))
}

impl DeriveGenerator {
    pub fn build_for(input: TokenStream, trait_impl: TokenStream2) -> DeriveGenerator {
        let trait_impl: syn::ItemImpl = syn::parse2(quote!(#trait_impl for Foo {}))
            .expect("invalid impl");
        let trait_path = trait_impl.trait_.clone().expect("impl does not have trait").1;
        let input = syn::parse(input).expect("invalid derive input");

        DeriveGenerator {
            input, trait_impl, trait_path,
            generic_support: GenericSupport::None,
            data_support: DataSupport::None,
            type_generic_mapper: None,
            generic_replacements: vec![],
            enum_validator: Box::new(|_, _| Ok(())),
            struct_validator: Box::new(|_, _| Ok(())),
            generics_validator: Box::new(|_, _| Ok(())),
            fields_validator: Box::new(|_, _| Ok(())),
            functions: vec![],
            enum_mappers: vec![],
            struct_mappers: vec![],
            variant_mappers: vec![],
            field_mappers: vec![],
            fields_mappers: vec![],
        }
    }

    pub fn generic_support(&mut self, support: GenericSupport) -> &mut Self {
        self.generic_support = support;
        self
    }

    pub fn data_support(&mut self, support: DataSupport) -> &mut Self {
        self.data_support = support;
        self
    }

    pub fn map_type_generic<F: 'static>(&mut self, f: F) -> &mut Self
        where F: Fn(&DeriveGenerator, &syn::Ident, &syn::TypeParam) -> TokenStream2
    {
        self.type_generic_mapper = Some(Box::new(f));
        self
    }

    pub fn replace_generic(&mut self, trait_gen: usize, impl_gen: usize) -> &mut Self {
        self.generic_replacements.push((trait_gen, impl_gen));
        self
    }

    validator!(validate_enum: Enum, enum_validator);
    validator!(validate_struct: Struct, struct_validator);
    validator!(validate_generics: &syn::Generics, generics_validator);
    validator!(validate_fields: Fields, fields_validator);

    pub fn function<F: 'static>(&mut self, f: F) -> &mut Self 
        where F: Fn(&DeriveGenerator, TokenStream2) -> TokenStream2
    {
        self.functions.push(Box::new(f));
        self.push_default_mappers();
        self
    }

    mappers! {
        (map_struct, try_map_struct, struct_mapper): Struct, struct_mappers,
        (map_enum, try_map_enum, enum_mapper): Enum, enum_mappers,
        (map_variant, try_map_variant, variant_mapper): Variant, variant_mappers,
        (map_fields, try_map_fields, fields_mapper): Fields, fields_mappers,
        (map_field, try_map_field, field_mapper): Field, field_mappers
    }

    fn _to_tokens(&mut self) -> Result<TokenStream> {
        use syn::*;

        // Step 1: Run all validators.
        // Step 1a: First, check for data support.
        let (span, support) = (self.input.span(), self.data_support);
        match self.input.data {
            Data::Struct(ref data) => {
                let named = Struct::from(&self.input, data).fields().are_named();
                if named && !support.contains(DataSupport::NamedStruct) {
                    return Err(span.error("named structs are not supported"));
                }

                if !named && !support.contains(DataSupport::TupleStruct) {
                    return Err(span.error("tuple structs are not supported"));
                }
            }
            Data::Enum(..) if !support.contains(DataSupport::Enum) => {
                return Err(span.error("enums are not supported"));
            }
            Data::Union(..) if !support.contains(DataSupport::Union) => {
                return Err(span.error("unions are not supported"));
            }
            _ => { /* we're okay! */ }
        }

        // Step 1b: Second, check for generics support.
        for generic in &self.input.generics.params {
            use syn::GenericParam::*;

            let (span, support) = (generic.span(), self.generic_support);
            match generic {
                Type(..) if !support.contains(GenericSupport::Type) => {
                    return Err(span.error("type generics are not supported"));
                }
                Lifetime(..) if !support.contains(GenericSupport::Lifetime) => {
                    return Err(span.error("lifetime generics are not supported"));
                }
                Const(..) if !support.contains(GenericSupport::Const) => {
                    return Err(span.error("const generics are not supported"));
                }
                _ => { /* we're okay! */ }
            }
        }

        // Step 1c: Third, run the custom validators.
        (self.generics_validator)(self, &self.input.generics)?;
        match self.input.data {
            Data::Struct(ref data) => {
                let derived = Derived::from(&self.input, data);
                (self.struct_validator)(self, derived)?;
                (self.fields_validator)(self, derived.fields())?;
            }
            Data::Enum(ref data) => {
                let derived = Derived::from(&self.input, data);
                (self.enum_validator)(self, derived)?;
                for variant in derived.variants() {
                    (self.fields_validator)(self, variant.fields())?;
                }
            }
            Data::Union(ref _data) => unimplemented!("union custom validation"),
        }

        // Step 2: Generate the code!
        // Step 2a: Generate the code for each function.
        let mut function_code = vec![];
        for i in 0..self.functions.len() {
            let function = &self.functions[i];
            let inner = match self.input.data {
                Data::Struct(ref data) => {
                    let derived = Derived::from(&self.input, data);
                    self.struct_mappers[i](self, derived)?
                }
                Data::Enum(ref data) => {
                    let derived = Derived::from(&self.input, data);
                    self.enum_mappers[i](self, derived)?
                }
                Data::Union(ref _data) => unimplemented!("can't gen unions yet"),
            };

            function_code.push(function(self, inner));
        }

        // Step 2b: Create a couple of generics to mutate with user's input.
        let mut generics = self.input.generics.clone();

        // Step 2c: Add additional where bounds if the generator asks for it.
        if let Some(ref type_mapper) = self.type_generic_mapper {
            for ty in self.input.generics.type_params() {
                let new_ty = type_mapper(self, &ty.ident, ty);
                let clause = syn::parse2(new_ty).expect("invalid type generic mapping");
                generics.make_where_clause().predicates.push(clause);
            }
        }

        // Step 2d: Add any generics in the trait.
        let mut generics_for_impl_generics = generics.clone();
        for (i, trait_param) in self.trait_impl.generics.params.iter().enumerate() {
            // Step 2d.0: Perform a generic replacement if requested. Here,
            // we determine if a generic (i) in the trait is going to replace a
            // generic in the user's type (the `jth` of the right kind).
            let replacement = self.generic_replacements.iter()
                .filter(|r| r.0 == i)
                .next();

            if let Some((_, j)) = replacement {
                use syn::{punctuated::Punctuated, token::Comma};

                // Step 2d.1: Actually perform the replacement.
                let replace_in = |ps: &mut Punctuated<GenericParam, Comma>| -> bool {
                    ps.iter_mut()
                        .filter(|param| param.kind() == trait_param.kind())
                        .nth(*j)
                        .map(|impl_param| *impl_param = trait_param.clone())
                        .is_some()
                };

                // Step 2d.2: If it fails, insert a new impl generic.
                // NOTE: It's critical that `generics` is attempted first!
                // Otherwise, we might replace generics that don't exist in the
                // user's type.
                if !replace_in(&mut generics.params)
                    || !replace_in(&mut generics_for_impl_generics.params)
                {
                    generics_for_impl_generics.params.insert(0, trait_param.clone());
                }
            } else {
                // Step 2d.2: Otherwise, insert a new impl<..> generic.
                generics_for_impl_generics.params.insert(0, trait_param.clone());
            }
        }

        // Step 2e: Split the generics, but use the `impl_generics` from above.
        let (impl_gen, _, _) = generics_for_impl_generics.split_for_impl();
        let (_, ty_gen, where_gen) = generics.split_for_impl();

        // Step 2b: Generate the complete implementation.
        let target = &self.input.ident;
        let trait_name = &self.trait_path;
        Ok(quote! {
            impl #impl_gen #trait_name for #target #ty_gen #where_gen {
                #(#function_code)*
            }
        }.into())
    }

    pub fn debug(&mut self) -> &mut Self {
        match self._to_tokens() {
            Ok(tokens) => println!("Tokens produced: {}", tokens.to_string()),
            Err(e) => println!("Error produced: {:?}", e)
        }

        self
    }

    pub fn to_tokens(&mut self) -> TokenStream {
        // FIXME: Emit something like: Trait: msg.
        self._to_tokens()
            .unwrap_or_else(|diag| {
                if let Some(last) = self.trait_path.segments.last() {
                    use proc_macro::Span;
                    use proc_macro::Level::*;

                    let id = &last.value().ident;
                    let msg = match diag.level() {
                        Error => format!("error occurred while deriving `{}`", id),
                        Warning => format!("warning issued by `{}` derive", id),
                        Note => format!("note issued by `{}` derive", id),
                        Help => format!("help provided by `{}` derive", id),
                        _ => format!("while deriving `{}`", id)
                    };

                    diag.span_note(Span::call_site(), msg).emit();
                }

                TokenStream::new().into()
            })
    }
}