1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
// Copyright 2014-2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
/// Slot is a single saved capture location. Note that there are two slots for
/// every capture in a regular expression (one slot each for the start and end
/// of the capture).
pub type Slot = Option<usize>;
/// Locations represents the offsets of each capturing group in a regex for
/// a single match.
///
/// Unlike `Captures`, a `Locations` value only stores offsets.
#[doc(hidden)]
pub struct Locations(Vec<Slot>);
impl Locations {
/// Returns the start and end positions of the Nth capture group. Returns
/// `None` if `i` is not a valid capture group or if the capture group did
/// not match anything. The positions returned are *always* byte indices
/// with respect to the original string matched.
pub fn pos(&self, i: usize) -> Option<(usize, usize)> {
let (s, e) = (i * 2, i * 2 + 1);
match (self.0.get(s), self.0.get(e)) {
(Some(&Some(s)), Some(&Some(e))) => Some((s, e)),
_ => None,
}
}
/// Creates an iterator of all the capture group positions in order of
/// appearance in the regular expression. Positions are byte indices
/// in terms of the original string matched.
pub fn iter(&self) -> SubCapturesPosIter {
SubCapturesPosIter { idx: 0, locs: self }
}
/// Returns the total number of capturing groups.
///
/// This is always at least `1` since every regex has at least `1`
/// capturing group that corresponds to the entire match.
pub fn len(&self) -> usize {
self.0.len() / 2
}
}
/// This is a hack to make Locations -> &mut [Slot] be available internally
/// without exposing it in the public API.
pub fn as_slots(locs: &mut Locations) -> &mut [Slot] {
&mut locs.0
}
/// An iterator over capture group positions for a particular match of a
/// regular expression.
///
/// Positions are byte indices in terms of the original string matched.
///
/// `'c` is the lifetime of the captures.
pub struct SubCapturesPosIter<'c> {
idx: usize,
locs: &'c Locations,
}
impl<'c> Iterator for SubCapturesPosIter<'c> {
type Item = Option<(usize, usize)>;
fn next(&mut self) -> Option<Option<(usize, usize)>> {
if self.idx >= self.locs.len() {
return None;
}
let x = match self.locs.pos(self.idx) {
None => Some(None),
Some((s, e)) => {
Some(Some((s, e)))
}
};
self.idx += 1;
x
}
}
/// `RegularExpression` describes types that can implement regex searching.
///
/// This trait is my attempt at reducing code duplication and to standardize
/// the internal API. Specific duplication that is avoided are the `find`
/// and `capture` iterators, which are slightly tricky.
///
/// It's not clear whether this trait is worth it, and it also isn't
/// clear whether it's useful as a public trait or not. Methods like
/// `next_after_empty` reak of bad design, but the rest of the methods seem
/// somewhat reasonable. One particular thing this trait would expose would be
/// the ability to start the search of a regex anywhere in a haystack, which
/// isn't possible in the current public API.
pub trait RegularExpression: Sized {
/// The type of the haystack.
type Text: ?Sized;
/// The number of capture slots in the compiled regular expression. This is
/// always two times the number of capture groups (two slots per group).
fn slots_len(&self) -> usize;
/// Allocates fresh space for all capturing groups in this regex.
fn locations(&self) -> Locations {
Locations(vec![None; self.slots_len()])
}
/// Returns the position of the next character after `i`.
///
/// For example, a haystack with type `&[u8]` probably returns `i+1`,
/// whereas a haystack with type `&str` probably returns `i` plus the
/// length of the next UTF-8 sequence.
fn next_after_empty(&self, text: &Self::Text, i: usize) -> usize;
/// Returns the location of the shortest match.
fn shortest_match_at(
&self,
text: &Self::Text,
start: usize,
) -> Option<usize>;
/// Returns whether the regex matches the text given.
fn is_match_at(
&self,
text: &Self::Text,
start: usize,
) -> bool;
/// Returns the leftmost-first match location if one exists.
fn find_at(
&self,
text: &Self::Text,
start: usize,
) -> Option<(usize, usize)>;
/// Returns the leftmost-first match location if one exists, and also
/// fills in any matching capture slot locations.
fn read_captures_at(
&self,
locs: &mut Locations,
text: &Self::Text,
start: usize,
) -> Option<(usize, usize)>;
/// Returns an iterator over all non-overlapping successive leftmost-first
/// matches.
fn find_iter (
self,
text: &Self::Text,
) -> Matches<Self> {
Matches {
re: self,
text: text,
last_end: 0,
last_match: None,
}
}
/// Returns an iterator over all non-overlapping successive leftmost-first
/// matches with captures.
fn captures_iter(
self,
text: &Self::Text,
) -> CaptureMatches<Self> {
CaptureMatches(self.find_iter(text))
}
}
/// An iterator over all non-overlapping successive leftmost-first matches.
pub struct Matches<'t, R> where R: RegularExpression, R::Text: 't {
re: R,
text: &'t R::Text,
last_end: usize,
last_match: Option<usize>,
}
impl<'t, R> Matches<'t, R> where R: RegularExpression, R::Text: 't {
/// Return the text being searched.
pub fn text(&self) -> &'t R::Text {
self.text
}
/// Return the underlying regex.
pub fn regex(&self) -> &R {
&self.re
}
}
impl<'t, R> Iterator for Matches<'t, R>
where R: RegularExpression, R::Text: 't + AsRef<[u8]> {
type Item = (usize, usize);
fn next(&mut self) -> Option<(usize, usize)> {
if self.last_end > self.text.as_ref().len() {
return None;
}
let (s, e) = match self.re.find_at(self.text, self.last_end) {
None => return None,
Some((s, e)) => (s, e),
};
if s == e {
// This is an empty match. To ensure we make progress, start
// the next search at the smallest possible starting position
// of the next match following this one.
self.last_end = self.re.next_after_empty(self.text, e);
// Don't accept empty matches immediately following a match.
// Just move on to the next match.
if Some(e) == self.last_match {
return self.next();
}
} else {
self.last_end = e;
}
self.last_match = Some(e);
Some((s, e))
}
}
/// An iterator over all non-overlapping successive leftmost-first matches with
/// captures.
pub struct CaptureMatches<'t, R>(Matches<'t, R>)
where R: RegularExpression, R::Text: 't;
impl<'t, R> CaptureMatches<'t, R> where R: RegularExpression, R::Text: 't {
/// Return the text being searched.
pub fn text(&self) -> &'t R::Text {
self.0.text()
}
/// Return the underlying regex.
pub fn regex(&self) -> &R {
self.0.regex()
}
}
impl<'t, R> Iterator for CaptureMatches<'t, R>
where R: RegularExpression, R::Text: 't + AsRef<[u8]> {
type Item = Locations;
fn next(&mut self) -> Option<Locations> {
if self.0.last_end > self.0.text.as_ref().len() {
return None
}
let mut locs = self.0.re.locations();
let (s, e) = match self.0.re.read_captures_at(
&mut locs,
self.0.text,
self.0.last_end,
) {
None => return None,
Some((s, e)) => (s, e),
};
if s == e {
self.0.last_end = self.0.re.next_after_empty(self.0.text, e);
if Some(e) == self.0.last_match {
return self.next();
}
} else {
self.0.last_end = e;
}
self.0.last_match = Some(e);
Some(locs)
}
}