Struct mio::net::UdpSocket [−][src]
pub struct UdpSocket { /* fields omitted */ }
Expand description
A User Datagram Protocol socket.
This is an implementation of a bound UDP socket. This supports both IPv4 and IPv6 addresses, and there is no corresponding notion of a server because UDP is a datagram protocol.
Examples
// An Echo program:
// SENDER -> sends a message.
// ECHOER -> listens and prints the message received.
use mio::net::UdpSocket;
use mio::{Events, Ready, Poll, PollOpt, Token};
use std::time::Duration;
const SENDER: Token = Token(0);
const ECHOER: Token = Token(1);
// This operation will fail if the address is in use, so we select different ports for each
// socket.
let sender_socket = UdpSocket::bind(&"127.0.0.1:0".parse()?)?;
let echoer_socket = UdpSocket::bind(&"127.0.0.1:0".parse()?)?;
// If we do not use connect here, SENDER and ECHOER would need to call send_to and recv_from
// respectively.
sender_socket.connect(echoer_socket.local_addr().unwrap())?;
// We need a Poll to check if SENDER is ready to be written into, and if ECHOER is ready to be
// read from.
let poll = Poll::new()?;
// We register our sockets here so that we can check if they are ready to be written/read.
poll.register(&sender_socket, SENDER, Ready::writable(), PollOpt::edge())?;
poll.register(&echoer_socket, ECHOER, Ready::readable(), PollOpt::edge())?;
let msg_to_send = [9; 9];
let mut buffer = [0; 9];
let mut events = Events::with_capacity(128);
loop {
poll.poll(&mut events, Some(Duration::from_millis(100)))?;
for event in events.iter() {
match event.token() {
// Our SENDER is ready to be written into.
SENDER => {
let bytes_sent = sender_socket.send(&msg_to_send)?;
assert_eq!(bytes_sent, 9);
println!("sent {:?} -> {:?} bytes", msg_to_send, bytes_sent);
},
// Our ECHOER is ready to be read from.
ECHOER => {
let num_recv = echoer_socket.recv(&mut buffer)?;
println!("echo {:?} -> {:?}", buffer, num_recv);
buffer = [0; 9];
}
_ => unreachable!()
}
}
}
Implementations
Creates a UDP socket from the given address.
Examples
use mio::net::UdpSocket;
// We must bind it to an open address.
let socket = match UdpSocket::bind(&"127.0.0.1:0".parse()?) {
Ok(new_socket) => new_socket,
Err(fail) => {
// We panic! here, but you could try to bind it again on another address.
panic!("Failed to bind socket. {:?}", fail);
}
};
// Our socket was created, but we should not use it before checking it's readiness.
Creates a new mio-wrapped socket from an underlying and bound std socket.
This function requires that socket
has previously been bound to an
address to work correctly, and returns an I/O object which can be used
with mio to send/receive UDP messages.
This can be used in conjunction with net2’s UdpBuilder
interface to
configure a socket before it’s handed off to mio, such as setting
options like reuse_address
or binding to multiple addresses.
Returns the socket address that this socket was created from.
Examples
use mio::net::UdpSocket;
let addr = "127.0.0.1:0".parse()?;
let socket = UdpSocket::bind(&addr)?;
Creates a new independently owned handle to the underlying socket.
The returned UdpSocket
is a reference to the same socket that this
object references. Both handles will read and write the same port, and
options set on one socket will be propagated to the other.
Examples
use mio::net::UdpSocket;
// We must bind it to an open address.
let socket = UdpSocket::bind(&"127.0.0.1:0".parse()?)?;
let cloned_socket = socket.try_clone()?;
assert_eq!(socket.local_addr()?, cloned_socket.local_addr()?);
Sends data on the socket to the given address. On success, returns the number of bytes written.
Address type can be any implementor of ToSocketAddrs
trait. See its
documentation for concrete examples.
Examples
use mio::net::UdpSocket;
let socket = UdpSocket::bind(&"127.0.0.1:0".parse()?)?;
// We must check if the socket is writable before calling send_to,
// or we could run into a WouldBlock error.
let bytes_sent = socket.send_to(&[9; 9], &"127.0.0.1:11100".parse()?)?;
assert_eq!(bytes_sent, 9);
Receives data from the socket. On success, returns the number of bytes read and the address from whence the data came.
Examples
use mio::net::UdpSocket;
let socket = UdpSocket::bind(&"127.0.0.1:0".parse()?)?;
// We must check if the socket is readable before calling recv_from,
// or we could run into a WouldBlock error.
let mut buf = [0; 9];
let (num_recv, from_addr) = socket.recv_from(&mut buf)?;
println!("Received {:?} -> {:?} bytes from {:?}", buf, num_recv, from_addr);
Sends data on the socket to the address previously bound via connect(). On success, returns the number of bytes written.
Receives data from the socket previously bound with connect(). On success, returns the number of bytes read.
Connects the UDP socket setting the default destination for send()
and limiting packets that are read via recv
from the address specified
in addr
.
Sets the value of the SO_BROADCAST
option for this socket.
When enabled, this socket is allowed to send packets to a broadcast address.
Examples
use mio::net::UdpSocket;
let broadcast_socket = UdpSocket::bind(&"127.0.0.1:0".parse()?)?;
if broadcast_socket.broadcast()? == false {
broadcast_socket.set_broadcast(true)?;
}
assert_eq!(broadcast_socket.broadcast()?, true);
Gets the value of the SO_BROADCAST
option for this socket.
For more information about this option, see
set_broadcast
.
Examples
use mio::net::UdpSocket;
let broadcast_socket = UdpSocket::bind(&"127.0.0.1:0".parse()?)?;
assert_eq!(broadcast_socket.broadcast()?, false);
Sets the value of the IP_MULTICAST_LOOP
option for this socket.
If enabled, multicast packets will be looped back to the local socket. Note that this may not have any affect on IPv6 sockets.
Gets the value of the IP_MULTICAST_LOOP
option for this socket.
For more information about this option, see
set_multicast_loop_v4
.
Sets the value of the IP_MULTICAST_TTL
option for this socket.
Indicates the time-to-live value of outgoing multicast packets for this socket. The default value is 1 which means that multicast packets don’t leave the local network unless explicitly requested.
Note that this may not have any affect on IPv6 sockets.
Gets the value of the IP_MULTICAST_TTL
option for this socket.
For more information about this option, see
set_multicast_ttl_v4
.
Sets the value of the IPV6_MULTICAST_LOOP
option for this socket.
Controls whether this socket sees the multicast packets it sends itself. Note that this may not have any affect on IPv4 sockets.
Gets the value of the IPV6_MULTICAST_LOOP
option for this socket.
For more information about this option, see
set_multicast_loop_v6
.
Sets the value for the IP_TTL
option on this socket.
This value sets the time-to-live field that is used in every packet sent from this socket.
Examples
use mio::net::UdpSocket;
let socket = UdpSocket::bind(&"127.0.0.1:0".parse()?)?;
if socket.ttl()? < 255 {
socket.set_ttl(255)?;
}
assert_eq!(socket.ttl()?, 255);
Executes an operation of the IP_ADD_MEMBERSHIP
type.
This function specifies a new multicast group for this socket to join.
The address must be a valid multicast address, and interface
is the
address of the local interface with which the system should join the
multicast group. If it’s equal to INADDR_ANY
then an appropriate
interface is chosen by the system.
Executes an operation of the IPV6_ADD_MEMBERSHIP
type.
This function specifies a new multicast group for this socket to join.
The address must be a valid multicast address, and interface
is the
index of the interface to join/leave (or 0 to indicate any interface).
Executes an operation of the IP_DROP_MEMBERSHIP
type.
For more information about this option, see
join_multicast_v4
.
Executes an operation of the IPV6_DROP_MEMBERSHIP
type.
For more information about this option, see
join_multicast_v6
.
Sets the value for the IPV6_V6ONLY
option on this socket.
If this is set to true
then the socket is restricted to sending and
receiving IPv6 packets only. In this case two IPv4 and IPv6 applications
can bind the same port at the same time.
If this is set to false
then the socket can be used to send and
receive packets from an IPv4-mapped IPv6 address.
Gets the value of the IPV6_V6ONLY
option for this socket.
For more information about this option, see set_only_v6
.
Get the value of the SO_ERROR
option on this socket.
This will retrieve the stored error in the underlying socket, clearing the field in the process. This can be useful for checking errors between calls.
Receives a single datagram message socket previously bound with connect.
This operation will attempt to read bytes from this socket and place
them into the list of buffers provided. Note that each buffer is an
IoVec
which can be created from a byte slice.
The buffers provided will be filled sequentially. A buffer will be entirely filled up before the next is written to.
The number of bytes read is returned, if successful, or an error is
returned otherwise. If no bytes are available to be read yet then
a WouldBlock
error is returned. This operation does not block.
On Unix this corresponds to the readv
syscall.
Sends data on the socket to the address previously bound via connect.
This operation will attempt to send a list of byte buffers to this
socket in a single datagram. Note that each buffer is an IoVec
which can be created from a byte slice.
The buffers provided will be written sequentially. A buffer will be entirely written before the next is written.
The number of bytes written is returned, if successful, or an error is
returned otherwise. If the socket is not currently writable then a
WouldBlock
error is returned. This operation does not block.
On Unix this corresponds to the writev
syscall.
Trait Implementations
Constructs a new instance of Self
from the given raw file
descriptor. Read more